Back Pain in Rowing; An Evolution of Understanding

Dr Fiona Wilson BSc, MSc, PhD, MISCP
Chartered Physiotherapist & Assistant Professor, TCD
An introduction

- Assistant Professor, School of Medicine, Trinity College Dublin
- Chartered Physiotherapist with over 25 years postgraduate experience
- Chief Physiotherapist Rowing Ireland 1996-2005
- Researcher specializing in rowing LBP, rheumatology and sports medicine
- Book editor, Associate editor for a number of MSK and sports medicine journals
- Cochrane Fellow
- Physiotherapist South Africa Rowing Team
- Ex rower in UK, South Africa and Ireland
The Evolution?

Unclear when rowing LBP first reported but Lloyd\(^1\) first reported ‘backache’ in 50\% of rowers (2 of 4 athletes!) during the British Empire and Commonwealth Games of 1958. Otherwise reporting rowing as ‘relatively unhazardous’.
The Evolution?

• 2014, BJSM publishes first issue specializing in rowing medicine

BASEM Issue

Focus on rowing
Return to sport post ACL reconstruction
Physical activity Rx

Editors: Fiona Wilson (PhD, MISCP)
Eleanor Tillett (MBBS, FFSEM)

bjsm.bmj.com
What stage of evolution?

- Lack of emphasis on basic epidemiology?
- Better development of understanding aetiology and mechanisms?
- Lack of translation from lab to water?
- Preventive measures based largely on clinical intuition?
Low back pain in context

• Low back pain is ranked as the greatest contributor to global disability with a global point prevalence of 9.4% (Western Europe 15%)\(^2\)

• 12-month incidence ranges from 18.4\(^3\) to 3-5\(^4\) depending on definition.

• Risk factors include gender, occupation (including lifting), obesity, smoking, socioeconomic factors, physical activity and lifestyle.
Rowing or LBP evolution?

- LBP is the most common MSK injury – is the experience in rowing significant?
- Understanding of LBP has evolved with increasing (?) incidence/prevalence. This appears to confirm the issue is very complex.
- Great evolution in rowing in recent years in equipment, training volumes and type.
- Introduction of biopsychosocial model of LBP in last 20 years.
Is rowing different?

- Lack of confounding variables including smoking, obesity and inactivity
- With evolution of rowing training and equipment, there has also been comparable evolution of support services and rehab (including medical investigation techniques)
- There is a developing ethos of maintaining athletes rather than simply ‘repairing’ them
- But…. there is a challenge in accessing rowing research as sports medicine journals focus on commercial interests
Rowing injury epidemiology; what do we know?

- Two studies (only) report injury incidence as 1.5 and 3.67/1000 hrs
- Lumbar spine is most commonly reported injury site ranging from 2.4% (of all sports) to 51% of injuries
- Of studies that reported 12 month incidence, LBP ranged from 32 to 51% of the surveyed cohort

5
Table 1: Summary of prospective and retrospective studies examining injury in rowers

<table>
<thead>
<tr>
<th>Authors</th>
<th>Type of study</th>
<th>Sample size</th>
<th>Participants</th>
<th>Severity of injury measured?</th>
<th>Training and competition exposure measured?</th>
<th>Injury rate / 1000 h</th>
<th>Injuries classified?</th>
<th>Mechanism of injury reported?</th>
<th>Most common injury site</th>
<th>Factors associated with injury onset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Devereaux and Ledman</td>
<td>Prospective survey of clinic attendance, 2 years</td>
<td>1186</td>
<td>Recreational athletes</td>
<td>No</td>
<td>No</td>
<td>Not measured</td>
<td>Yes</td>
<td>No</td>
<td>Lumbar spine (2.4% of total)</td>
<td>Not measured</td>
</tr>
<tr>
<td>Budgett and Fuller</td>
<td>Retrospective survey of all injuries, 1 year</td>
<td>69</td>
<td>International male rowers</td>
<td>Yes</td>
<td>Training estimated</td>
<td>0.4 (rowing)</td>
<td>Yes</td>
<td>Yes</td>
<td>Lumbar spine (51%)</td>
<td>Weight training</td>
</tr>
<tr>
<td>Reid et al</td>
<td>Retrospective survey of clinic attendance, 4 yrs</td>
<td>275</td>
<td>International female rowers</td>
<td>No</td>
<td>No</td>
<td>Not measured</td>
<td>Yes</td>
<td>Yes</td>
<td>Lumbar spine (25%)</td>
<td>Time of year and weight training</td>
</tr>
<tr>
<td>Boland and Hosea</td>
<td>Retrospective survey of all injuries, 3 years</td>
<td>180</td>
<td>College male rowers</td>
<td>No</td>
<td>No</td>
<td>Not measured</td>
<td>Yes</td>
<td>No</td>
<td>Knee (25%)</td>
<td>Not measured</td>
</tr>
<tr>
<td>Edgar</td>
<td>Retrospective survey of clinic attendance, 5 weeks</td>
<td>44</td>
<td>International junior rowers</td>
<td>No</td>
<td>No</td>
<td>Not measured</td>
<td>Yes</td>
<td>No</td>
<td>Lumbar spine (30% of total)</td>
<td>Not reported</td>
</tr>
<tr>
<td>Coburn and Wajjawa</td>
<td>Retrospective survey of clinic attendance, 1 yr</td>
<td>54</td>
<td>Elite rowers</td>
<td>No</td>
<td>No</td>
<td>Not measured</td>
<td>Yes</td>
<td>Yes</td>
<td>Lumbar spine (45% of total)</td>
<td>Weight training</td>
</tr>
<tr>
<td>Hickey et al</td>
<td>Retrospective survey of clinic attendance, 10 yrs</td>
<td>172</td>
<td>Elite rowers</td>
<td>No</td>
<td>No</td>
<td>Not measured</td>
<td>Yes</td>
<td>Yes</td>
<td>Chest (22.6%) female; Lumbar spine (25%) male</td>
<td>Time of year</td>
</tr>
<tr>
<td>Parkkari et al</td>
<td>Prospective survey of all injuries, 1 year</td>
<td>3363</td>
<td>General population</td>
<td>Yes</td>
<td>Classed as 'participation time'</td>
<td>1.5, 95% CI 0.6 to 3.9</td>
<td>Yes</td>
<td>Yes</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>Smoljanovic et al</td>
<td>Retrospective survey of all injuries, 1 year</td>
<td>398</td>
<td>International junior rowers</td>
<td>Yes</td>
<td>Yes</td>
<td>2.1 (training)</td>
<td>Yes</td>
<td>Yes</td>
<td>Lumbar spine (32.3%)</td>
<td>More than 7 training sessions/week</td>
</tr>
<tr>
<td>Wilson et al</td>
<td>Prospective study of all injuries, 1 year</td>
<td>20</td>
<td>International male and female rowers</td>
<td>Yes</td>
<td>Yes</td>
<td>3.67</td>
<td>Yes</td>
<td>Yes</td>
<td>Lumbar spine (31.8% of total)</td>
<td>Ergometer training load</td>
</tr>
<tr>
<td>Wirzen et al</td>
<td>Retrospective survey of all injuries, 1 year</td>
<td>67</td>
<td>Elite male and female rowers</td>
<td>No</td>
<td>Yes</td>
<td>Not measured</td>
<td>Yes</td>
<td>Yes</td>
<td>Lumbar spine (50% of interviewees)</td>
<td>Not reported (reported as 'overuse')</td>
</tr>
</tbody>
</table>
Studies examining back pain in rowing

- Bahr et al\(^6\) - 55% of rowers report LBP in 12 months (cf 63% skiing, 49.8% orienteering). Rowers report most missed training & hospitalisation
- Teitz et al\(^7\) - 32% report LBP during college rowing
- Ng et al\(^8\) – point prevalence of 64.5% (males) and 52.8% (females) in adolescent rowers.
- Newlands et al\(^9\) – 53% report LBP in 12 months (1.67/1000 hrs) in the only prospective study.
Critique of injury surveillance to date?

• Lack of gold standard prospective studies
• Very limited prospective recording of exposure data so injury predictors (risk factors) can be determined
• Focus of studies on elite or college populations
• No studies of attrition due to LBP
• Interventions studied without reference to epidemiology
Risk factors for LBP in rowing

• Previous history of back pain7,9
• Ergometer training (particularly sessions lasting longer than 30 mins)5,7-9
• Total training hours per month9
• Age (increasing with years rowing)9
Factors also associated with LBP in rowing

- Core stability training (!!!!)
- Time of season (peaking in Winter months)
- Use of hatchet oars
- History of rowing before age 16
- Weight training (particularly free weights)
- More than 7 training sessions/week in juniors
- Older rowers
Summary of risk factors

- Ergo (more than 30 mins)
- History of LBP
Kinematics

• There is a growing body of work exploring how understanding rowing kinematics can help prevent injury and enhance performance9-23
• Research has been laboratory focused with the advantage of controlling many variables
• Small amount of research has taken place on the water allowing a comparison of ergometer and ‘on water’ kinematics
<table>
<thead>
<tr>
<th>Authors</th>
<th>Subjects</th>
<th>Study protocol</th>
<th>Findings</th>
</tr>
</thead>
</table>
| McGregor et al 2002 | 20 male elite rowers | Static Interventional MRI
Sagittal plane analysis
Static analysis of 4 stroke phases | 1) Rotation of Lsp into flexion at catch
2) Lsp returns to 'neutral' at finish
3) Lsp held 'upright relative to sacrum at catch |
| Bull & McGregor 2000 | 6 male elite rowers | Validation of 'Flock of Birds' against MRI
10 mins rowing at max. effort sagittal plane analysis | 1) Fatigue causes increased posterior pelvic tilt throughout stroke, particularly in late drive and finish. |
| McGregor et al 2005 | 12 female international rowers | Incremental step test
Sagittal plane analysis
Flock of Birds | 1) Anterior pelvic tilt at catch
2) Anterior tilt decreases at higher ratings
3) Posterior pelvic tilt at finish
4) Greater Lsp flexion and extension with fatigue
5) Relatively less pelvic rotation with fatigue due to altered lumbopelvic rhythm |
| Caldwell et al 2003 | 16 male and female school rowers | 2000 metre test
Sagittal plane analysis
Video analysis of reflective markers | 1) Fatigue caused lumbar flexion to increase at the catch and mid-drive phase. |
| Pollock et al 2009 | 9 female international Rowers | 2000 metre test
Sagittal plane analysis
Motion capture system | 1) Pelvic and lumbar segments move from flexion to extension in 1st phase of stroke
2) Motion of the Lsp is minimal during peak force production
3) Most movement seen at L3-S1. |
| McGregor et al 2007 | 7 female international Rowers | Incremental step test
Sagittal plane analysis
Flock of Birds | 1) 2 year training trunk endurance improved lumbo-pelvic ratio allowing equal amounts of lumbar and pelvic rotation |
| Holt et al 2003 | 13 male elite rowers | 1 hour rowing piece
Sagittal plane analysis
Flock of Birds | 1) Significant increase in maximum Lsp flexion and extension with fatigue.
2) Peak force develops significantly later in drive phase with fatigue. |
| Mackenzie et al 2008 | 6 male international Rowers | 1 hour rowing piece
Sagittal plane analysis
Flock of Birds | 1) Small increase in Lsp flexion at catch and extension at finish (not significant)
2) Subtle increase in anterior pelvic rotation at catch and posterior pelvic rotation at finish |
| Steer et al 2006 | 12 male novice rowers | 300m rowing piece
Sagittal plane analysis
Flock of Birds | 1) Lsp extension greater on Water Rower
2) Less pelvic anterior rotation at catch on Concept 2 cf Water Rower |
Important findings from lab studies

- Specific pattern of lumbo pelvic motion with anterior rotation observed in the pelvis at the catch position and posterior rotation at the finish position.
- The lumbar spine rotates into flexion at the catch.
- Fatigue was associated with a change in spinal kinematics; an increase in posterior pelvic tilt and an increase in magnitude of lumbar spine flexion and some studies found an increase in lumbar spine extension.
- Studies show large ranges of motion and alteration of movement patterns as a result of fatigue.
- As rowers fatigue, they increase range of movement in their spine and decrease movement in their pelvis as they try to maintain the catch position which is likely to increase loading on the lumbar spine.

Figure 1. An example of processed data output from one subject taken at the 4th testing interval.
Importance of pelvic position

catch
Importance of pelvic position

finish
Further information?

- All studies analysed motion in the sagittal plane in lumbar spine - demonstrates the greatest range.
- Likely that the LSp also moves in both frontal and transverse planes in rowing- reflects normal movement.
- Differences between water and ergometer kinematics have received limited attention- conclusions about boat kinematics should not be inferred from ergometer kinematics.
- Probable that there are greater movements in the frontal plane in the LSp in a boat - expected to be limited on the ergometer.
- None of the equipment used was portable, which may explain why no measurements were conducted in a boat.
FRONTAL PLANE MOTION in the LUMBAR SPINE OF ELITE ROWERS

- Analysis of sagittal plane kinematics of the lumbar spine during rowing has noted increased range of motion during prolonged rowing.
- The greatest difference in lumbar movement during rowing in a boat compared with ergometer rowing is likely to be seen in the frontal plane although this has not yet been studied.
- Study examined the effects of fatigue (measured by blood lactate accumulation) on changes in angular displacement of the mid-lumbar spine in frontal plane, during ergometer rowing.
<table>
<thead>
<tr>
<th>Participants</th>
<th>Instrumentation</th>
<th>Protocol</th>
<th>Data analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 senior male rowers, Age 23.2 (SD 5.2) yrs, Mass 79.13 (SD 5.0) kg. Over 18 yrs No history of LS p injury in the previous 6 months.</td>
<td>Spectrotilt RS232 Electronic Inclinometer connected to a Biometrics DataLog. System previously calibrated noting max error of 0.5º.</td>
<td>Inclinometer attached to L3, analysis of frontal plane motion throughout test. Incremental step test on Concept 2 model D ergometer to volitional exhaustion. Blood lactate sampling at every rest period from earlobe using a Lactate Pro portable lactate analyser.</td>
<td>All cycles for first and last step measured. Peak to trough = total frontal plane displacement. First step test compared last step of t using a paired t-test. Alpha was set at P<0.05. Linear regression analysis of relationship between BL a and displacement.</td>
</tr>
</tbody>
</table>

Spectrotilt RS232 Electronic Inclinometer
www.spectronsensors.com

Biometrics DataLog
www.biometricsltd.com
Subject 1: Step test with BLa

Frontal plane angular displacement during step test with first step magnified (below)
Comparison of first stage and last stage of the test found significant increase (mean increase = 4.1° (1.94), 95% CI, 2.9 to 5.3, $t = 7.36$, $P = 0.000014$).

Mean frontal plane angular displacement (±SD) during the time periods of the test.
Chart of mean BLa against displacement

Lactate (mmol)

Displacement angle (degrees)

Time period

0-180s
210-390s
420-600s
630-810s
840-1020s
1050-1230s
1260-1440s
Regression analysis of variables against spinal angular displacement

<table>
<thead>
<tr>
<th>Predictor variable</th>
<th>Time period</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactate</td>
<td>0-180s</td>
<td>0.20</td>
</tr>
<tr>
<td>Stroke rate</td>
<td>210-390s</td>
<td>0.020</td>
</tr>
<tr>
<td>Stroke rate + lactate</td>
<td>420-600s</td>
<td>0.098</td>
</tr>
<tr>
<td></td>
<td>630-810s</td>
<td>0.183</td>
</tr>
<tr>
<td></td>
<td>840-1020s</td>
<td>0.215</td>
</tr>
<tr>
<td></td>
<td>1050-1230s</td>
<td>0.213</td>
</tr>
<tr>
<td></td>
<td>1260-1440s</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Explained variation in frontal plane angular displacement at L3 from lactate scores during the step test.

Regression analysis of predictor variables

- **Lactate**: $P < 0.0001$, $R^2 = 0.24$
- **Stroke rate**: $P = 0.0001$, $R^2 = 0.335$
- **Stroke rate + lactate**: Only stroke rate is a significant predictor of angular displacement ($P = 0.001$)
- Frontal plane behaves like sagittal plane (previous data).

- Both frontal and sagittal plane reach high range of motion. Mean angular displacement varied from 4.6° (1st step) to 8.7° (last step).

- Implications for high ROM and injury.

- Motion increased during rowing test which may be due to fatigue and/or increasing stroke rate.

- High stroke rate combined with fatigue may increase risk of injury.
– Thus, a significant increase in frontal plane motion at L3 during incremental test.
– Increase in Bla was associated with the increased L3 motion, increase
– Increased stroke rate associated with increased L3 motion
– Thus, considerable motion in frontal plane during rowing and should be considered as a factor for injury
– Side flexion (frontal plane) combined with lumbar flexion (sagittal plane) with the addition of loading has been observed to be a risk factor for low back pain.
• Ergometer compared to water?

• Small participant numbers
• Surprising difference between Concept2 and boat
• Explanation?

<table>
<thead>
<tr>
<th>Subject</th>
<th>Average displacement (degrees)</th>
<th>100s boat</th>
<th>100s C2</th>
<th>300s boat</th>
<th>300s C2</th>
<th>500s boat</th>
<th>500s C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.5</td>
<td>2.5</td>
<td>4.9</td>
<td>2.3</td>
<td>3.7</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5.4</td>
<td>2.5</td>
<td>1.0</td>
<td>2.4</td>
<td>2.9</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.7</td>
<td>7.3</td>
<td>3.9</td>
<td>7.6</td>
<td>3.2</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3.1</td>
<td>5.6</td>
<td>2.7</td>
<td>4.0</td>
<td>0.6</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.1</td>
<td>4.6</td>
<td>5.7</td>
<td>8.8</td>
<td>4.7</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>3.6</td>
<td>4.5</td>
<td>3.6</td>
<td>5.0</td>
<td>3.0</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>t-test</td>
<td>P=0.45</td>
<td></td>
<td></td>
<td>P=0.28</td>
<td></td>
<td>P=0.12</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.3: Comparison of mean frontal angular displacement values for ergometer (C2) and boat rowing.
Sagittal plane – water compared to ergometer?

- LSp ROM (sagittal plane) measured using a flexible EGM Sample at 10Hz
- EGM placed over L2 - L4 (segment of greatest sagittal motion)
- Full standing flexion was measured
- Incremental step test
- Heart rate recorded for each step then repeated in a sculling boat using recorded HR.
Results

Ergometer data

Boat data

0-180s

0-180s

magnification of motion cycles of step 1

magnification of motion cycles of step 1

displacement angle (deg)

time (1/10 secs)

displacement angle (deg)

time (1/10 secs)
Ergo versus boat
Summary

Figure 6.3: Chart to show the differences in mean lumbar spine sagittal angle between ergometer and boat rowing (with SD).
• Kleshnev (2003)24 showed that the foot stretcher force develops much earlier on the ergometer as a result of higher inertia forces which the rower has to overcome to change direction of body mass movement, and the handle force on the ergometer has a higher peak and develops later.
• Kleshnev, (2005)25 showed that rowers have a 3-5\% longer stroke on an ergometer because of an 8-10\% longer leg drive.
• Lamb, (1989)26 showed that the leverage of pull on the oar is greater for ergometer rowing than for water rowing.
• Thus a greater increase in lumbar flexion is seen in ergometer rowing as a result of greater ‘spinal creep’
• Repetitive cyclic flexion combined with loading of the lumbar spine, has been recognised in a number of studies to increase risk of lumbar spine injury27-31
Muscle activity

- Emphasis on examining ergometer activity and on EMG activity rather than measures of strength and endurance.
- No difference in overall trunk strength between rowers and controls, rowers exhibited higher EMG activity in their trunk extensors.
- Activity of the spinal extensor muscles was high and increased as 2000m ergo test continued and spinal extensor muscle activity dominated the rowing stroke.
- Analysis of cross sectional area of muscles at 2 levels of the Lsp showed differences between groups of rowers who had no history or present/previous history of back pain.
- Asymmetry is common and may not be related to sweep rower’s developed dominance.
Forces acting on the lumbar spine in rowing

- Compressive and shear force estimated at L4/5 (2D spinal model) during a 6 min (max) ergometer test.
- Peak compressive and shear forces calculated as 2730 (609) N and 693 (117) N respectively.
- Peak compressive force generated 28-29% of the way through the drive phase of the stroke.
- Peak compressive forces generated at the lumbar spine were 4.6 times the rowers’ body weight\(^3\).
Summary & interpretation
• Lifting weights from the ground requires the LSp to be flexed by 70-80% of full standing flexion (toe touching) generating substantial tension in non-contractile tissues of the back38.

• Mean intradiscal pressure at (L4/5) of 2.30MPa when lifting a 20kg weight with a ‘bent over round back’ and a pressure of 0.83MPa when sitting with maximum lumbar flexion39, horizontal intradiscal pressure in sitting at L4/5 as 1133kPa40.

• Rowers achieve such high levels of sagittal flexion - then combined with loading which correlates with work place studies which have cited both of these factors as risk for low back injury41.

Individually, these factors increase injury risk, but when combined as in this case, risk is increased further.

• A number of studies have found that the combination of flexion and ‘twisting’, combined with loading was a specific risk factor for onset of low back pain41-43

• Repeated cyclical loading has been noted as a risk factor for lumbar spine injury in a number of previous studies41-45

• Cyclical loading induces ‘creep’ in the tissues allowing an increase in initial range of motion and may increase risk of injury in a number of ways46

• Creep induced in the viscoelastic tissues of the spine desensitises the mechanoreceptors causing decreased muscle activity, instability and injury even before muscle fatigue of sets in’.

• Reflexive muscular stabilising forces in the lumbar muscles are compromised increasing risk of injury.
The Phenomenon of ‘creep’

- Fatigue in the lumbar extensor muscles allows the increase in lumbar flexion with an associated increased bending moment which increases injury risk47,48
- Sanchez-Zuriaga et al.,49 suggests that tissue creep rather than muscle fatigue impairs sensorimotor control mechanisms.
- Repeated loaded cyclical flexion compromises neuromuscular control (leading to increased injury risk) has been confirmed in a number of studies49-51
- Creep behaviour further cause specific damage to lumbar tissues, most notably intervertebral disc52,53 but also vertebral bodies and endplates54 and facet joint capsule55
- Prolonged cyclical loading of the lumbar spine in flexion/extension not only elicits creep but also causes significant increases in cytokines expression, causing acute inflammation for several hours after the activity51,56
- If the inflamed lumbar spine is continued to be exposed to repetitive loading on a daily basis this may lead to ‘conversion to chronic inflammation, degeneration of the viscoelastic tissues into fibrous non-functional tissue and the associated mechanical and neuromuscular disorders and loss of function’56.
- Elite rowers frequently row on a daily basis which means that the loading described above is indeed regular and sustained; this may help to explain the high incidence of lumbar spine injury in this group.
Specificity of tissue damage

- Annulus and nucleus work together to sustain compressive loads38 - increased compressive load on the neural arch is caused by long term ‘creep’ loading
- High anterior disc compressive force is noted in high ranges of flexion57
- Repeated cyclical loading and high levels of spinal flexion exhibited by rowers have been shown to cause lumbar disc bulging58 herniation53 and facet joint capsule strain59
- Compression forces noted in the rowers LSp - comparable to those seen during lifting which can cause fractures of the vertebral endplates60
- Lumbar ligaments - primary role to resist separation at end range. Thus likely that high tensile forces and resulting tissue damage are observed in the ligaments that resist frontal and sagittal motion in the LSp in rowers.
- Facet capsules, posterior longitudinal ligaments and posterior annulus contribute more than 3/4 of resistance to lumbar flexion. Micro damage and associated inflammation in the spinal ligaments may become chronic61.
- Due to impairment of sensorimotor control mechanisms - reflexive activation of multifidi and longissimus muscles is decreased during repetitive motion - likely that rowers suffer associated reduction in muscular protection of the underlying spine.
- Rowers are at risk of sustaining damage to a variety of structures of the lumbar spine, notably the disc, ligaments and facet joint capsule as well as impairment in muscle function.
Translating evidence into practice
Clinical Expertise

Best Research Evidence

EBP

Patient Values & Preferences
Injury prevention

Ergometer

- The length of the ergometer session should be reduced as risk of lumbar spine injury increases with the number of loading cycles.
- Ergometer should never be used as a warm-up, particularly for weight training.
- Ergometer technique should be examined (elite vs. novice – appropriate goals).
- Damper settings.
- Consider use of non-fixed ergometers.
- Foot stretcher position – higher foot stretcher, dec L5/S1 moments but inc L5/S1 shear.
We can see how different the contours of the back in these two great scullers (Rob Waddell in the foreground and Mahe Drysdale in the background). When we draw the contour lines, scale and overlap them, the difference is obvious: Mahe has a straighter lower back and more curvature in the chest, where as Rob has the opposite.
Injury prevention

Posture and kinematics
Injury prevention
Posture and kinematics

- A straighter lumbar spine helps to better transfer force from hips to shoulders and prevents injury.
- More curvature in the thoracic spine can be more economical because it uses elastic properties of the muscles rather than strength.

Analysis of the lumbar and thoracic angles confirms our qualitative observations: the four best scullers have significantly straighter lumbar angles (160-180 deg) and more curved thoracic angle (140-160 deg), while Waddell had more acute-angled lumbar area (150-160 deg) and a straighter thoracic angle (160-170 deg).
Injury prevention

Posture and kinematics

... The ‘c’ curve or the ‘f’ curve?

- Swing from hips
- Vertical shins
- Keep head moving *horizontally*
- Flex through full spine, ‘unroll’ vertebrae evenly
The ‘C’ Spine?

- Prof Richard Aspden: curvature of the spine is necessary for its load-bearing function
- Spine considered as an arch with load distributed evenly through segments
- Arch collapses if a hinge forms as it turns the structure into a ‘mechanism’
- Collapse can be prevented by tensile strength of tissues but formation of hinges may lead to tissue damage
- Thrust line must be within equilibrium and lies within cross section of arch
Importance of intra-abdominal pressure

- Valsalva manoeuvre adopted as a reflex to increase intradiscal pressure, protects spine and may prevent hinging or buckling.
- Varies widely between individuals.
Injury prevention
Screening
Screening
Screening
Modern rehabilitation of low back pain has placed particular emphasis on co-contraction of the trunk muscles, particularly using protocols such as Pilates type exercise.

The findings of research suggest that during peak force generation, such co-contraction does not exist and the extensor muscles dominate.

Rowers may be using inappropriate rehabilitation protocols.

Traditional ‘core stability’ programmes, with their emphasis on co-contraction are included in most rowers’ training.

Research suggests that more emphasis should be placed on training the spinal extensors as well as training eccentric action of the flexors.
Rehabilitation

Range of motion/flexibility

- Emphasis on hip range – particularly bilateral
- Ability to dissociate hip from lumbar motion
- Hip/knee ankle complex
- Asymmetries important?
Rehabilitation

Range of motion/flexibility

• Spinal motion
• Emphasis on thoracic kyphosis
• Very individual
• Consider response to fatigue
• Underlying systemic disorder?
Rehabilitation

Muscle strength/endurance

- Emphasis on both eccentric and concentric contraction of trunk extensors
- Front versus rear squat?
- Emphasis on DYNAMIC activity rather than isometric
- AVOID PLANKS!
Rehabilitation

Proprioception

- Position sense is compromised following injury
- Ergometer studies also suggest that fatigue may compromise (ergo vs. water studies)
What about biopsychosocial approaches?

- Fear avoidance
- Catastrophising
- Hypervigilence
- Strong evidence that understanding cognitive components of LBP is key to management
- Likely to be no different in rowing
- Recent studies incorporate CBT
A word of caution – red flags

- Always consider inflammatory disorder
- Rheumatoid disorders much more prevalent in population than previously thought
- Exercise so important in AS, RA (etc) management that presentation becomes sub clinical
- And of course, other red flags. Tired rowers = poor historians!
Translating evidence into practice
What do the clinicians say?

- Risk factors
- Screening
- Early Management
- Prognostic indicators
- Rehabilitation
Risk factors

- Hip joint ROM – influences spino-pelvic kinematics
- Labral, CAM lesions, FAI
- General hypo or hypermobility
- Dysfunctional movement patterns
- Males – poor hip flexion
- Females – poor trunk strength or hypermobility
- Weather (wind)
- Time of season
- Sudden increased training load
- Technical problems (boat off balance, rigging)
- Recovery period between water and gym
- Previous injury
- Delayed recognition
- Mixed messages from support staff
Screening

- Hips – weight bearing and position on ergometer
- Weight bearing ankle dorsiflexion
- Lateral hip stability and gluts
- Hip arthroscopy – early degenerative changes
- Lumbopelvic rhythm – consider as a complex
- Perturbation strategies
- Compensation in systems
- Movement patterning
- Questionnaire screening tools (e.g., Keel STaRT Back screening tool)
- Newlands – no correlation of screening with risk
Early management

- Analgesia, NSAID’s where appropriate
- Investigations?
- * Do no harm – training attenuation
- Normal movement
- Proprioceptive taping
- Isometrics

- Emphasis on non-generic, individual Rx
- Assess for red/yellow flags
- Reassure that not normal to have pain
- Education/mindfulness/cognitive input
- Determine mechanical/cognitive/structural emphasis
Management – investigations?

Consider for historical comparator from baseline
Rapid diagnosis
Radiculopathy
Prognostic indicators

• Previous history may indicate course
• Catastrophic onset associated with poorer prognosis
• Radicular pain – poorer prognosis
• Inflammatory component

• Fixed structural deficit in kinetic chain (e.g. congenital limitation of hip ROM)
• See risk factors
Rehabilitation

- Early control of motion segment/address movement faults
- Attention to lumbo-sacral junction and load
- ROM ex to improve positioning
- Trunk endurance to emphasize extensors
- Early return to rowing – avoid ergometer
- High reps in S&C – consider effects of fatigue on proprioceptive function
- Feedback tools
- Consider athlete as a whole system and consider interaction of kinetics
- Consider implications of small changes on whole athlete
- Consider compensations in systems
- Specificity in rehab, especially core. Reformer Pilates and dynamic activities most appropriate
What's missing?
In summary

- Factors associated with onset of LBP in rowers are history of previous injury and ergometer training volume.

- Lumbopelvic motion should be considered when analyzing trunk movement in rowing. Excessive use of lumbar flexion and extension without accompanying pelvic tilting may lead to increased lumbar spine loading.

- Rowing training and rehabilitation needs to consider endurance of the trunk muscles to facilitate good lumbopelvic rhythm. Factors such as fatigue, rowing intensity and skill level will also influence trunk control.

- Hip ROM and lower kinetic chain flexibility will influence lumbar loading.

- A non-generic approach is optimal with a consideration of the complexities of LBP presentation.
The future

- Multi-centre prospective injury study at multiple levels of rowing
- Real time feedback tools
- Consensus statement on low back pain management
- Trials examining management interventions
- Back pain screening tool designed for rowers
- Greater efforts to disseminate research findings and clinical expertise
Thank you – questions?
References

